

Modelling phage therapy dynamics of MRSA on ex vivo pig skin experiments

Alfredo. Acosta¹; A. D. Knipper²; J. A. Hammerl²; T. Lienen²; K, Kausrud³, S. Widgren¹, B. A. Tenhagen²; Thomas. Rosendal¹

¹Swedish Veterinary Agency.

²German Federal Institute for Risk Assessment.

³Norwegian Veterinary Institute.

ModAH, Nantes

August, 29th 2024

Speaker: Alfredo Acosta

German Federal Institute for Risk Assessment

SWEDISH VETERINARY AGENCY

Research Project: 2022-01-04 - 2025-03-31

https://www.jpiamr.eu/projects/phage-ex/

Background

Alexander Fleming, 1928. The age of antibiotics

Feb 13, 1915 Volume 185, Number 4772, p309-358 Originally published as Volume 1, Issue 4772

i/article/frederick-william-twort-not-just-bacteriophage.html

LA-MRSA

- Pigs are common carriers of livestockassociated methicillin resistant Staphylococcus aureus LA-MRSA.
- MRSA is Resistant to several common antibiotics.
- zoonotic.
- Initially hospital-associated, its prevalence have augmented since 1990s.

Angen, Ø., et al., 2019. Controlling Transmission of MRSA to Humans During Short-Term Visits to Swine Farms Microbiol. 9. https://doi.org/10.3389/fmicb.2018.03361

Phage-MRSA Interactions

Infection rate of MRSA by bacteriophages depends by chance and various types of parameters, usually:

- a) Affinity of the phage to irreversibly bind with the receptor.
- b) Rate of diffusion of phage particles in the infection medium.

Sinha, S., et al, 2018. Modeling Bacteria-Phage **Interactions and Its Implications for Phage Therapy** https://doi.org/10.1016/bs.aambs.2018.01.005

Multiplicity of Infection

"Multiplicity of infection literally means the ratio of phages to bacteria"

MOI 0.1 = 10^5 CFU/ml and 10^4 PFU/ml (less phages than bacteria)

MOI 1 = 10^5 CFU/ml and 10^5 PFU/ml (same concentration)

MOI 10 = 10^5 CFU/ml and 10^6 PFU/ml (more phages than bacteria)

Behavior of suscesive phage applications.

Same phage different MOI.

Abedon, S.T., 2016. Phage therapy dosing: The problem(s) with multiplicity of infection (MOI). Bacteriophage 6, e1220348. https://doi.org/10.1080/21597081.2016.1220348

Previous work

Testing control mesures against MRSA

Control measure	Mean time (days) to elimination	Probability of elimination (%)
Single control measures		
BS+	559	0.01
Biweekly ¹	587	0.07
Test ² gilts	300	2.96
Clean AIAO	1 158	0.02
Combined control measures		
Test G + S, clean CF and AIAO, BS+, $M-$	365	100.00
Test G + S, clean CF and AIAO, $M-$	536	100.00
Test G + S, clean AIAO, BS+, $M-$	533	99.99
Test G + S, clean AIAO, BS+	492	99.98
Test G + S, clean AIAO, $M-$	946	94.04
Test G + S, clean AIAO	920	94.33
Test G + S, BS+, $M-$	565	23.7
Test G + S	291	3.26
Test gilts, clean AIAO, BS+, M $-$	868	54.39
Test gilts, clean AIAO, BS+	780	63.31
Test gilts, clean AIAO, M—	660	18.92
Test gilts, clean AIAO	648	23.63
Test sows, clean AIAO, BS+, $M-$	977	99.1
Test sows, clean AIAO, BS+	931	99.39
Test sows, clean AIAO, M—	1 600	18.67
Test sows, BS+, M-	1 109	0.02
Clean AIAO, BS+, M—	1 510	1.46
Clean CF and AIAO	1 370	73.02

Tuominen, K.S., Sternberg Lewerin, S., Jacobson, M., Rosendal, T., 2022. Modelling environmentally mediated spread of livestock-associated methicillin-resistant Staphylococcus aureus in a pig herd. Animal 16, 100450. https://doi.org/10.1016/j.animal.2021.100450

Tuominen, K.S., Sternberg Lewerin, S., Widgren, S., Rosendal, T., 2023. Assessment of control measures against livestockassociated methicillin-resistant Staphylococcus aureus in a farrow-to-finish pig herd using infectious disease modelling. animal 17, 100840. https://doi.org/10.1016/j.animal.2023.100840

Modelling environmental spread of MRSA

- Determine the viability of phage therapy to combat livestocklacksquareassociated methicillin-resistant Staphylococcus aureus (LA-MRSA);
- Reduce transmission within and between pig herds, exposure of farm staff and the environment.

Materials

Sample preparation

- 2 ml of: MRSA strain 19ST269
 - Isolated from pig barn swab sample
 - 10⁵ CFU/ml per skin sample
- Phage P19ST269-22 Isolated from pig slaughter wastewater

Sampling

3 biological Die cutter 5 cm2 replicates per time point

Anna-Delia Knipper | PhageEx Meeting | 19.06.2023

Materials

12/32

Datasets

Microorganism b bb bb bbw p

Methods

Only bacteria counts are used / frequency dependency

$$\frac{dS}{dt} = \alpha S \qquad \frac{dS}{dt} = \alpha S - \beta SP/N \qquad \frac{dS}{dt} = \alpha S - \beta SP/N \frac{dP}{dt} = \beta SP/N$$

Parameter	Symbol	
alpha (α)	Growth rate of bacteria	
beta (β)	Binding rate of phages	
gamma (γ)	Latency period	
delta (δ)	Resistance of bacteria	
h	Burst size at lysis	

$$\frac{dS}{dt} = \alpha S - \beta SP/N \qquad \qquad \frac{dS}{dt} = \alpha S - \beta SP/N - \delta SP/N \\ \frac{dI}{dt} = \beta SP/N - \gamma I \qquad \qquad \frac{dI}{dt} = \beta SP/N - \gamma I \\ \frac{dP}{dt} = hI \qquad \qquad \frac{dR}{dt} = \alpha R + \delta SP/N \\ \frac{dP}{dt} = hI \end{cases}$$

Units	Reference	
h⁻¹	Modelled, (Cairns et al., 2009)	
ml CFU ⁻¹ h ⁻¹	Modelled	
h ⁻¹	Modelled,	
h ⁻¹	Modelled,	
PFU ⁻¹	Santos (2014)	

abc

Distance function : $\bar{x}((log(model) - log(expected))^2)$ **Modell parameter** : α , β , γ , δ , h **Priors:** N particles: 100 - 2000 500 - 25.000 Ninit:

Image: Sunnåker, 2013.

Widgren, S., et al., 2019. SimInf: An R Package for Data-Driven Stochastic Disease Spread Simulations. Journal of Statistical Software 91, 1-42. https://doi.org/10.18637/jss.v091.i12

Sunnåker, M., 2013. M., Approximate Bayesian Computation. PLOS Computational Biology 9, <u>https://doi.org/10.1371/journal.pcbi.1002803</u>

Results

[1] Growth rate of bacteria (α) glm

	0	
	0	
	0	
	0	
	0	
noi 10		
l prediction		

Growth rate

[1] Growth rate of bacteria (α) glm

α = 0.23

α = 0.06

17/32

α = **0.05**

α = **0.07**

First 8 hours

 $\alpha = 0.28$ 8h

α = 0.23 24h

α = 0.06

 $\alpha = -0.25$

α = 0.05

 α = 0.12

18/32

α = 0.07

^{= -0.04} α

Growth rate

[2] Compartment model: Grow rate

α = 0.26

α = 0.23

α = 0.066

α = 0.06

glm

19/32

α = 0.092

 $\alpha = 0.050$

α = 0.05

 $\alpha = 0.07$

Force of infection

[3] Compartimental model with phages **Concentration is constant between S and P**

 $\beta = 1.98$

In(ba

 $\beta = 0.26$

= 0.017

Force of infection

[4] Compartimental model with Growing phages

 β = 2.5e-6

 $\beta = -12.78$

= 1.19e-5

Force of infection & burst size

[5] Compartimental model + Infected compartment

 $\beta = 4.19e-06$

 $\beta = 0.53$

h = 11.97

h = 7.90e-07

= 1.19e-05

h = 47.5

Mutation rate

[6] Resistence development

$\delta = 1.06e-3$

$\delta = 3.9e-03$

δ = **7.3e-5**

Mutation rate

[6] Resistence development

SWEDISH VETERINARY AGENCY

Model evaluation

÷

Sensitivity analysis

Partial rank correlation coeficient

+/- 0.1 - 10

Take-home message

- Reduction in the bacterial growth rate suggest an effect of phages combating LA-MRSA (2.7 and 3.5 log units' reduction).
- Phages effectivity decrease with time (~8h).
- Multiplicity of infection drives the mechanism of bacterial infection (changes in beta). -Lower MOI behave better.
- biological process.

The inclusion of the resistance mechanism on the model improved the fit and explained the

We are not driven by the mere desire to satisfy curiosity...

Phage therapy

SWEDISH VETERINARY AGENCY

Future work

- Include phage counts in the fit. •
- Quantification of resistant bacteria (lab bfR). ullet
- Testing therapeutical potential in silica: ulletAdd new phages. (when (t), how much (MOI)).
- How much the force of infection is needed to extinguish LA-MRSA.

Thanks to our partners

German Federal Institute for Risk Assessment

o jpiamr https://ww

SWEDISH VETERINARY AGENCY

Kausrud Kyrre

Bernd Tenhagen

Jens Hammerl

Tobias Lienen

https://www.jpiamr.eu/projects/phage-ex/

All models are wrong...

<u>sva.se/en/what-we-</u> <u>do/research-at-sva/researchers-</u> <u>at-sva/researchers/alfredo-</u> <u>acosta/</u>

alfredo.acosta@sva.se

... still summer! 20 August 2024 07:25

