Quantifying the influence of wild boar density on African swine fever (ASF) transmission in boar wild populations Italy, 2022–2023

Brandon HAYES, Jun-Sik LIM, Mathieu ANDRAUD, Timothée VERGNE INRAE ENVT Toulouse & ANSES Ploufragan France

Nantes, France 28 August 2024

ASF in the EU

Fatal viral hemorrhagic fever of domestic pigs and wild boar

Approaching endemicity in multiple areas

Wild boar play a central role in sustaining virus circulation

Preventing new outbreaks and gaining control of existing ones critical to control

EFSA. (2024). Epi Analysis of ASF in the EU, 2023

Gaining control

Based on EU strategy of regional compartmentalisation

- Prevent incursions
- Control invasions

Focus on reducing wild boar population density

Target density determined by **host** threshold density (N_t)

wild boar $\label{eq:rho} \rho < N_t$ population density

 $\mathcal{F}(\rho) = ? : N_t = ?$

Guberti, V., et al. (2019). FAO APHM No. 22

The role of wild boar density

Ideal data needed for investigation

Positive & negative surveillance data

Fine resolution wild boar abundance estimates

Emerging (i.e. not yet endemic) situation

European Commission

EUROPEAN FOOD SAFETY AUTHORITY

The role of wild boar density

Ideal data needed for investigation

Positive & negative surveillance data

Fine resolution wild boar abundance estimates

Emerging (i.e. not yet endemic) situation

Density (wb/km²)

ENETWILD-Consortium. (2024). EFSA Ext. Sci. Rep.

Surveillance results

January 2022 – September 2023

7000 km² study area

8500+ carcasses tested

10% ASF positive

2 distinct waves in near-continuous radial spread

Surveillance results

January 2022 – September 2023

7000 km² study area

8500+ carcasses tested

10% ASF positive

2 distinct waves in near-continuous radial spread

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.

Model entity

Density-explicit 2 x 2 km cell

Infectious process Detection-delay SIR model

Infectious periods (IP)

Estimated per carcass (IPcarcass)

IP_{cell} defined by continuous overlap of IP_{carcass}.

Model entity

Density-explicit 2 x 2 km cell

Infectious process Detection-delay SIR model

Infectious periods (IP)

Estimated per carcass (IPcarcass)

IP_{cell} defined by continuous overlap of IP_{carcass}.

Model entity

Density-explicit 2 x 2 km cell

Infectious process

Detection-delay SIR model

Infectious periods (IP)

Estimated per carcass (IPcarcass)

IP_{cell} defined by continuous overlap of IP_{carcass}.

Detection rates

Weekly probability of detection per cell

Recovery rates Seasonal (winter/non-winter)

Re-susceptibility

Fixed from waves in epi curve

F (n carcasses tested & mean prevalence at first detection)

Detection rates

Weekly probability of detection per cell

Recovery rates Seasonal (winter/non-winter)

Re-susceptibility

Fixed from waves in epi curve

Season	Definition	Weeks	Value
Winter	Mean weekly temp ≤ 5°C	49–6	0.095
Non- winter	Mean weekly temp > 5°C	7–48	0.14

Detection rates

Weekly probability of detection per cell

Recovery rates Seasonal (winter/non-winter)

Re-susceptibility

Fixed from waves in epi curve

Simulating infection

Model Selection

8 models fit by APMC

Summary statistics

Best performing model

Variant of sequential Monte Carlo approximate Bayesian computation (ABC-SMC)

Incidence, area of spread, total wild boar density of detected cells

Nearest distance to observed summary statistics

Model Selection

Transmission pattern

Farrowing season

Mating season

Observed dvnamics

Statistics

Sim true (95% CI) Sim true (50% CI) Sim obs (95% CI) Sim obs (50% CI)

Observed cell - - -

Density effect

Null-model best-fitting ∴ No constant density effect Wave-specific effect?

Density effect

Null-model best-fitting

: No constant density effect

Wave-specific effect?

Compare difference in proportion of cells belonging to each density class by wave

Why wave specific effect?

Lack of power

Difference in control measures between time periods

Truly no impact of density during the invasion period

Perspectives

Take-home message Constant influence of density on ASF spread not observed in Italy Wave-specific effect of density supported for second wave

- Include new wave-three data to examine density effect
- Fit model with wave-specific parameters for density (e.g. φ_1 , φ_2 , φ_3)
 - Apply model to contrasting situations (e.g. Sweden, Belgium)

Next steps

Special thanks to Lina MUR & Eleonora CATTANEO from EFSA and the ENETWild Consortium

Thank you for your attention

Brandon Hayes INRAE ENVT brandon.hayes@envt.fr

https://xkcd.com/1838/

HPAI MODELLING CHALLENGE

Surveillance stats

- 8500+ carcasses tested
 - 25% found dead
 - 65% hunted
- 10% ASF positive
 - 85% found dead
- Minority dead non-symptomatic, road/predator killed

Assumptions

Exponentially-distributed detection and recovery rates

Fixed parameters informing infectious periods

Constant detection delay for all carcasses

Cell recovery dependent on detection

Par	Value	Source
Case fatality interval	2 weeks	In-vivo experimentat (Pietschmann et al., 2
Detection delay	2 weeks	Field experience in So Korea (J.S. Lim, perso comm)
Winter cold period (median < 5° C)	Weeks 1–6, 49–52 of year	Weekly provincial temperature data fro EFSA
Carcass infectiousness persistence	4 weeks (non-winter) 6 weeks (winter)	In-vivo experimentat (Fischer et al., 2020 Guberti et al., 2022
Mean prevalence at first detection	0.78	Observed data
Re-susceptibility transition	38th week of year (~mid September)	Observed data

Summary statistics

Incidence

Total MCP area

Total density

Detection rate

Distance (km)	Weeks	Mean prev
	4	0.93
2	2	0.93
	6	0.92
	2	0.84
4	4	0.84
	6	0.82
	2	0.81
6	4	0.78
	6	0.76
	2	0.75
8	4	0.71
	6	0.70
	2	0.67
10	4	0.65
	6	0.63

Detection probability

Simulated detection probability congruent with observed detections

Surveillance data, Northern Italy, 2022-2023

Expected detection probability

0.2

0.4

0.6

0.8

