A novel machine learning approach to assess the risk of future

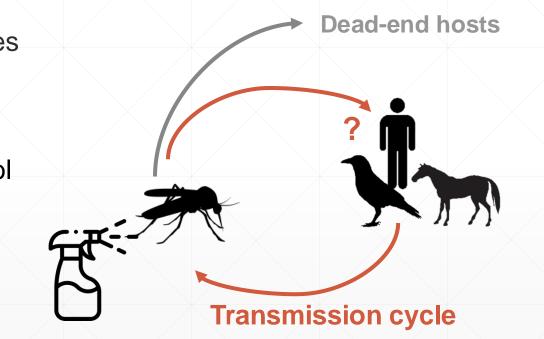
mosquito-borne disease outbreaks

Clara Delecroix, PhD candidate 28/08/2024

Why is it important?

Increasing threat of mosquito-borne diseases

Control efforts: mosquito population control



Machine learning approaches in epidemiology

Many potential applications for machine learning approaches in epidemiology.

Risk mapping (Mapping the transmission risk of Zika virus using machine learning models, Jiang et al, 2018)

Forecasting

(Machine learning and dengue forecasting: Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia, Zhao et al, 2020)

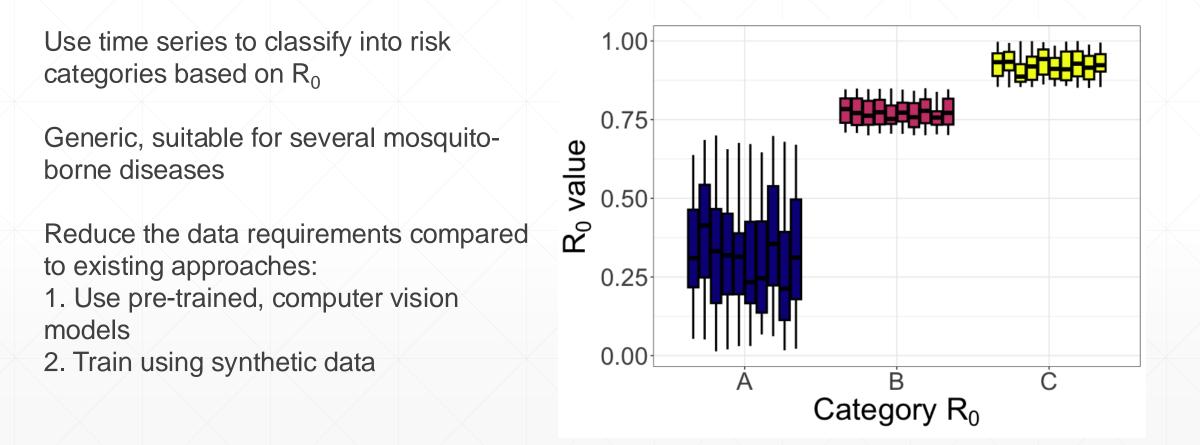
Machine learning approaches in epidemiology

Many potential applications for machine learning approaches in epidemiology.

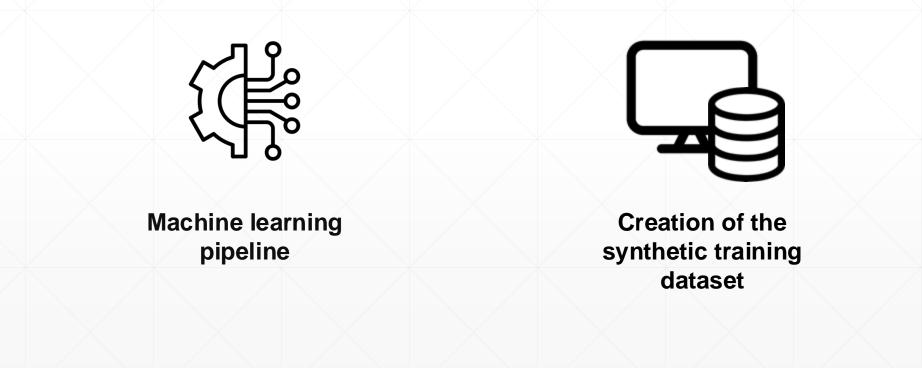
Risk mapping Only tells us about suitability, not if an outbreak will start

Forecasting Requires large amounts of data for training the algorithm

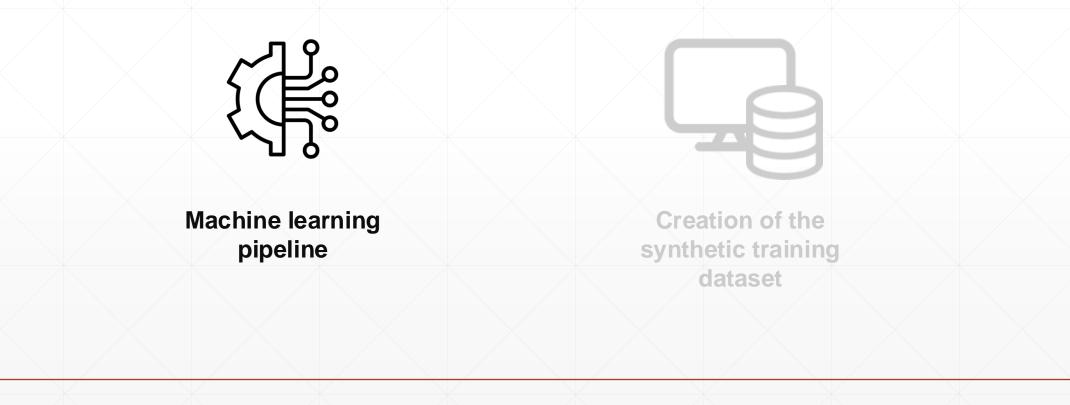
Objective: predict the risk of future outbreaks



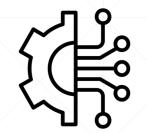
Can we predict the risk of future outbreaks of mosquito-borne diseases using a machine learning approaches?

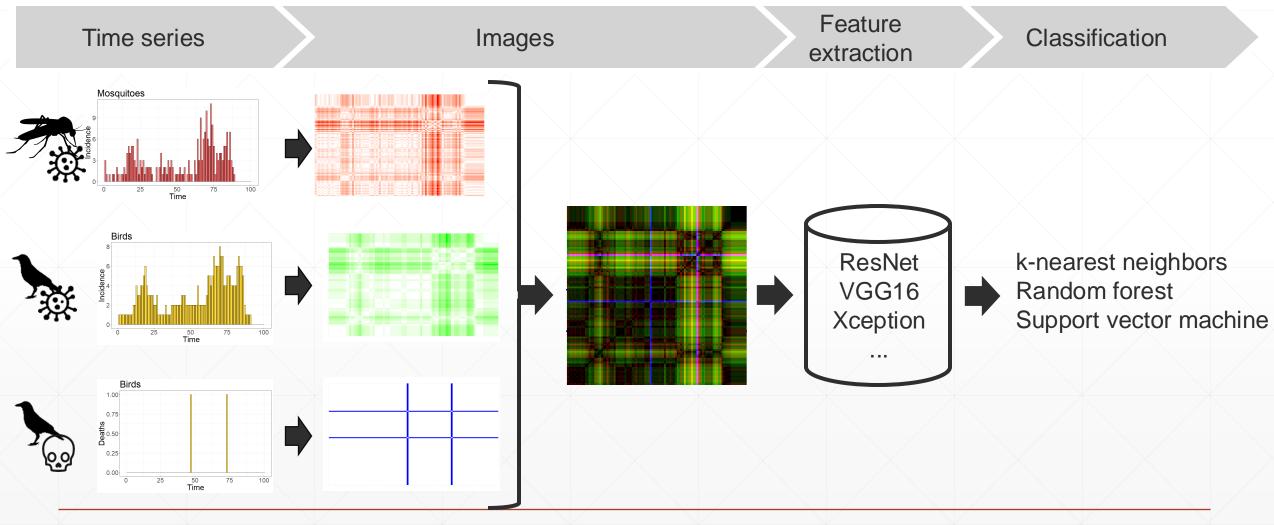


Can we outperform existing machine learning approaches to predict the risk of future outbreaks of mosquito-borne diseases by transforming the data?



Machine learning pipeline

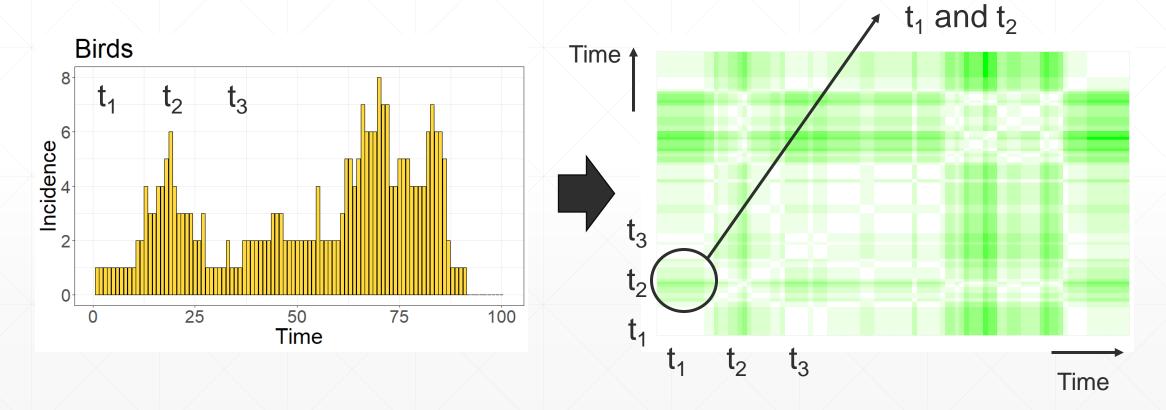


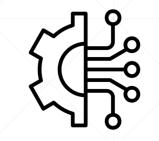


Distance between

From time series to images

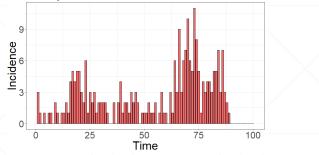
Recurrence plots: Euclidean distance between each pair of points

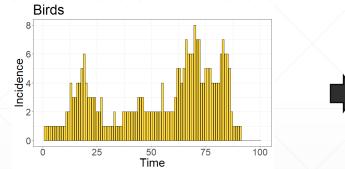


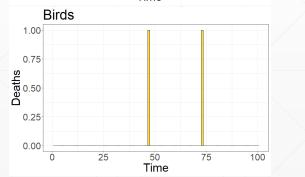


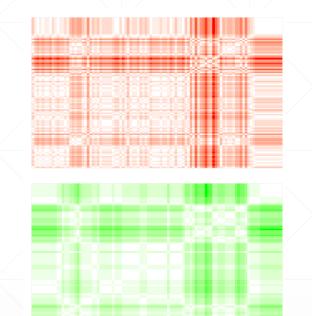
From time series to images

Mosquitoes



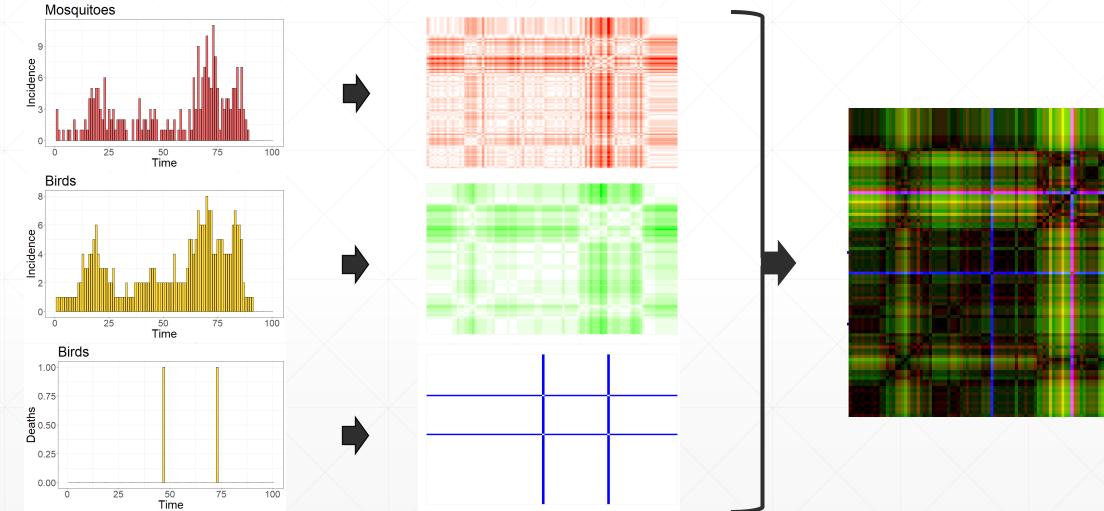






Recurrence plots: Euclidean distance between each pair of points

From time series to images



Transfer learning using feature extraction

- Used in computer vision: extract important features in an image
- Algorithms trained on large dataset of images
- What is in this picture?

Transfer learning using feature extraction

- Used in computer vision: extract important features in an image
- Algorithms trained on large dataset of images
- What is in this picture?
- Important features of the picture

Classification

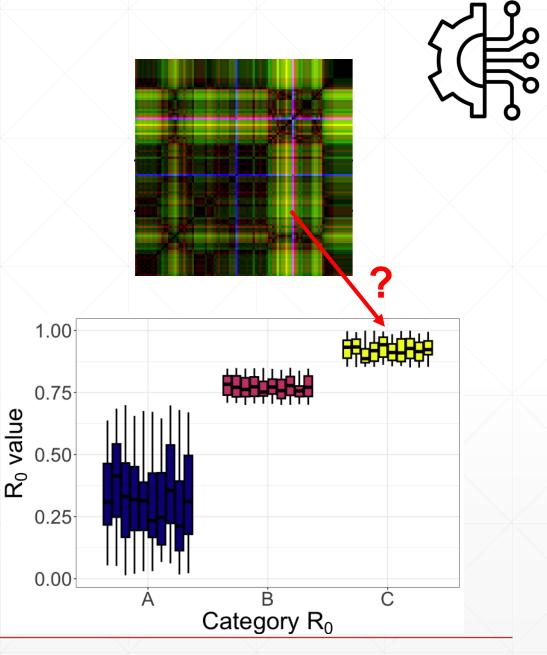
- Predict the correct label given input data
- What is in this picture?
 - A truck
 - A cat
 - A bike

Classification

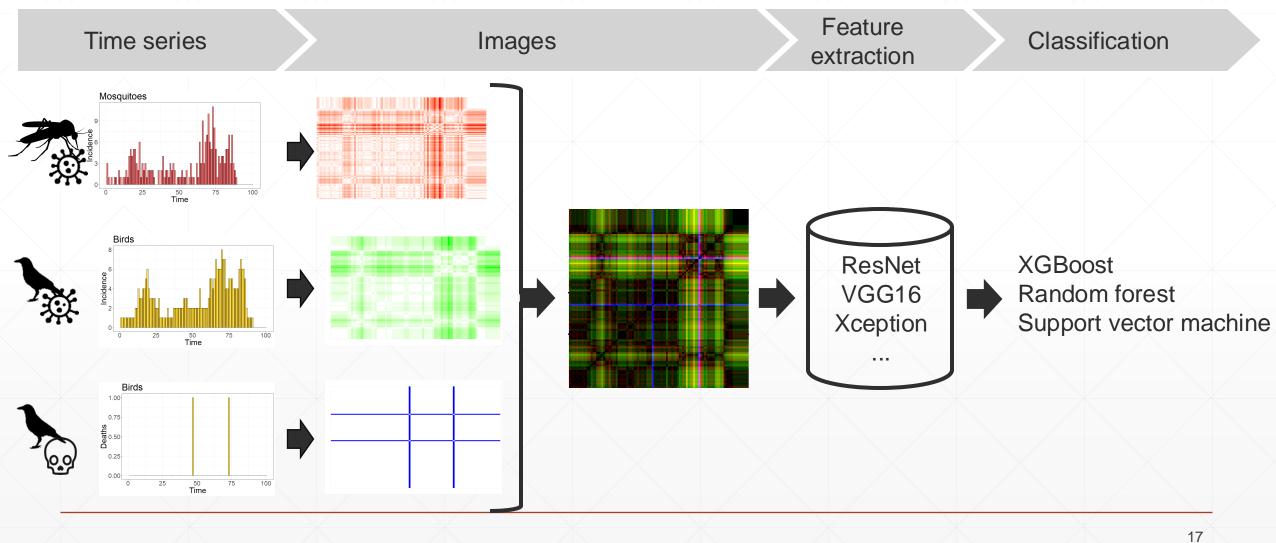
- Predict the correct label given input data
- What is in this picture?
 - A truck
 - A cat
 - A bike

Classification

- Predict the correct label given input data
- For our problem: identify the correct R₀ category



Machine learning pipeline

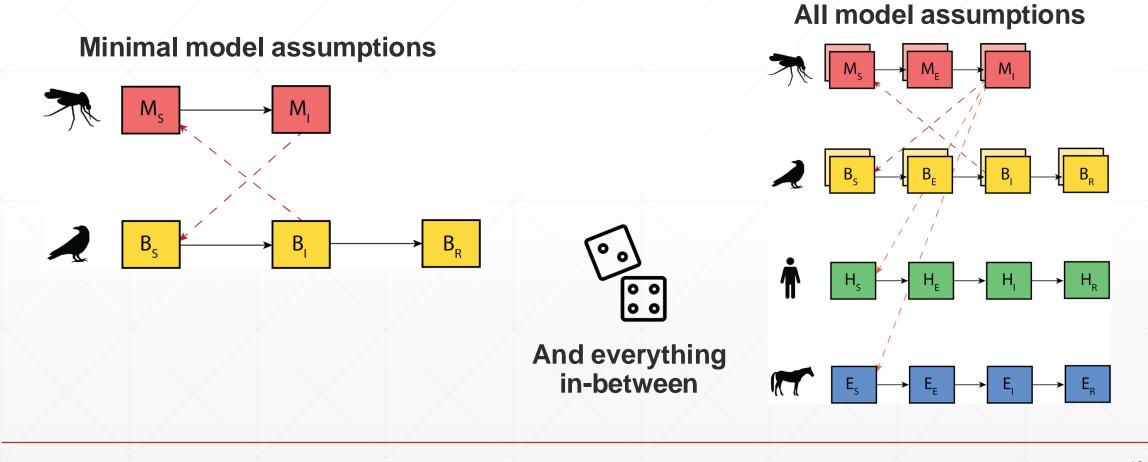


Can we outperform existing machine learning approaches to predict the risk of future outbreaks of mosquito-borne diseases by transforming the data?

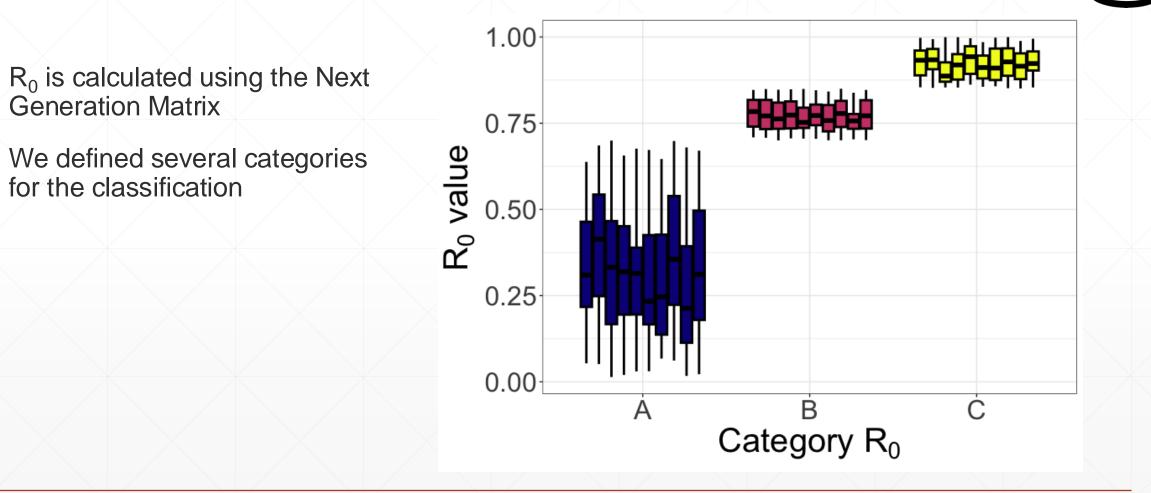
 Machine learning pipeline
 Creation of the synthetic training dataset

Creation of the synthetic dataset

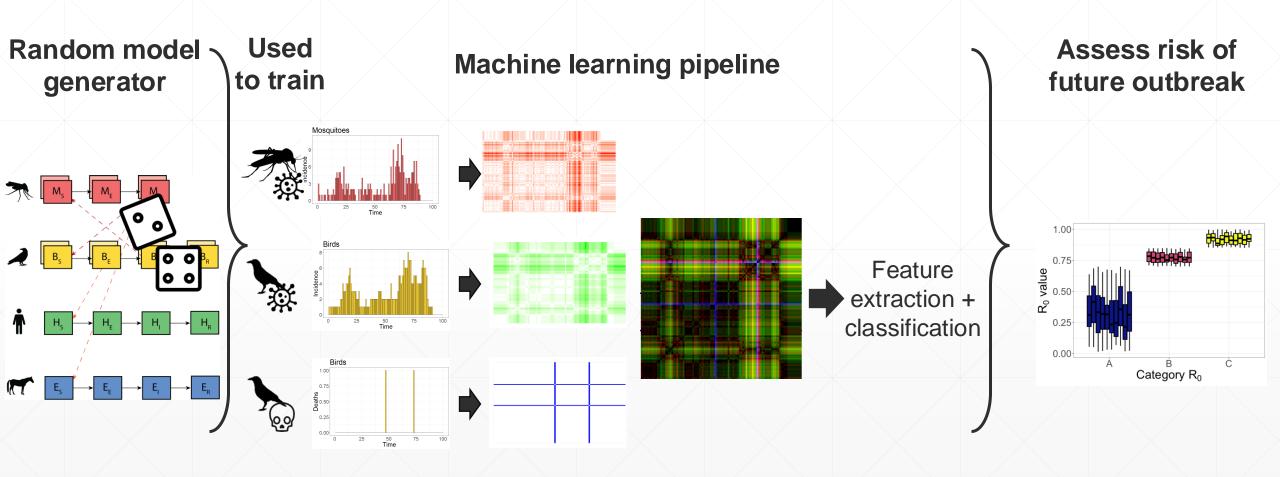
To ensure enough diversity in the dataset: random model generator



Creation of the synthetic dataset



Summary of the approach



Results

Performance metric: accuracy, i.e. proportion of correctly classified instances

Classification algorithm eature ctractor	XGBoost	Support vector machine (SVM)	Random forest (RF)	CNN (on raw time series)
ResNet	0.794	0.827	0.817	0.649

Conclusion

- Machine learning approaches have the potential to improve control efforts for mosquito-borne diseases by assessing the risk of future outbreaks
- Transforming time series into images allows to leverage pre-trained computer vision algorithms
- Using a random model generator makes the framework flexible to many mosquito-borne diseases
- Future work: validate the pipeline with real-data

Thank you for your attention!

Special thanks to everybody involved in the project

Hien thi dieu Truong

Ingrid van de Leemput Ricardo da Silva Torres

Quirine ten Bosch

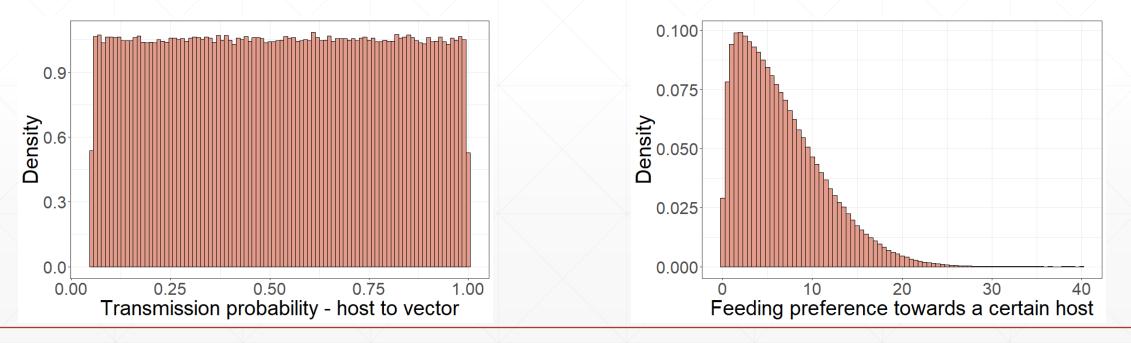
Egbert van Nes

Marten Scheffer

Creation of the synthetic dataset

Parameters are randomly sampled from large distributions

(de Wit et al., 2024, Proceedings of the Royal Society B)



Confusion matrix

	Class A	Class B	Class C
Class A	True A	False B	False C
	(TA)	(FBA)	(FCA)
Class B	False A	True B	False C
	(FAB)	(TB)	(FCB)
Class C	False A	False B	True C
	(FAC)	(FBC)	(TC)
	– Class B –	Class A Class B Class B Class C False A (FAB) False A	Class ATrue A (TA)False B (FBA)Class BFalse A (FAB)True B (TB)Class CFalse AFalse B

Predicted label

Metrics

• Accuracy = $\frac{TA+TB+TC}{TA+FAB+FAC+FBA+TB+FBC+FCA+FCB+TC}$

• $PrecisionA = \frac{TA}{TA + FAB + FAC}$, total precision = average of precision A, B and C

• $RecallA = \frac{TA}{TA + FBA + FCA}$, total recall = average of recall A, B and C

• $F1 \ score = 2 \ \frac{Precision \times Recall}{Precision+Recall}$

Metrics

Accuracy = Ability of the model to classify correctly

PrecisionA = Ability of the model to identify all instances of A

• *RecallA* = Ability of the model to classify instances of A correctly

• *F*1 *score* = Average of precision and recall

Linearsvm_ResNet	Precision	Recall	F1	Accuracy				
Class A	0.848	0.837	0.842	0.842				
Class B	0.799	0.806	0.802	0.802				
Class C	0.834	0.837	0.836	0.836				
Average	0.827	0.827	0.827	0.827				
XGBoost_ResNet								
Class A	0.756	0.836	0.794	0.794				
Class B	0.799	0.763	0.781	0.781				
Class C	0.835	0.783	0.808	0.808				
Average	0.796	0.794	0.794	0.794				
svm_pca_ResNet								
Class A	0.797	0.877	0.835	0.835				
Class B	0.841	0.783	0.811	0.811				
Class C	0.852	0.826	0.839	0.839				
Average	0.830	0.829	0.828	0.829				

1D-CNN (datapoints) 0.72 0.84 0.777 Class A 0.777 Class B 0.556 0.52 0.597 0.556 Class C 0.743 0.506 0.602 0.602 0.649 0.661 0.649 0.645 Average