Outbreak reconstruction with a slow evolving multi-host pathogen

A comparative study of three existing methods on *Mycobacterium bovis* outbreaks

France's officially bovine tuberculosisfree status under threat

France's officially bovine tuberculosisfree status under threat

France's officially bovine tuberculosisfree status under threat

Two surveillance systems with unbalanced sampling schemes

Phylogenetic tree reconstruction was used to study transmission between species

1 7			MRCA	Evolution rate	Inter-species transmission
		Côte-d'Or	1997 [1991 – 2002]	0.42 [0.31 – 0.54]	
		Dordogne / Haute-Vienne	1991 [1971 – 2000]	0.57 [0.54 – 0.71]	
		PA / Landes	1990 [1980 – 1996]	0.41 [0.29 – 0.55]	
	2000 2005 2010 2015	Duault et al. (202 Canini et al. (202	2) Veterinary Research 3) Microbiology Open		6

Transmission trees is a better restitution tool

Scénario exhaustif

Incidence and genomic data can be combined in transmission trees

- 22 methods identified...
- None for multi-host systems

Temps

Incidence and genomic data can be combined in transmission trees

- 22 methods identified...
- None for multi-host systems

A better understanding of the impact of sampling bias in a multi-host system

A better understanding of the impact of sampling bias in a multi-host system

1. Simulating transmission tree

1. Simulating transmission tree

2. Simulating sequences

1. Simulating transmission tree

2. Simulating sequences

3. Definig sampling bias scenarios

1. Simulating transmission tree

2. Simulating sequences

3. Definig sampling bias scenarios

4. Reconstruction		Time	Sequence	Species
		T1	ACTT	Badger
	Methods	Т2	ACTT	Cattle
11-11		Т3	ACAT	Cattle
		Т4	AGTT	Badger

1. Simulating transmission tree

2. Simulating sequences

3. Definig sampling bias scenarios

5. Evaluation

4. Reconstruction		Time	Sequence	Species
		T1	ACTT	Badger
		Т2	ACTT	Cattle
1.71		Т3	ACAT	Cattle
	Methods	Т4	AGTT	Badger

30 transmission trees are simulated to test the methods

D'après Bouchez-Zacria et al., 2023

D'après Bouchez-Zacria et al., 2023

A

19

S_B

21

 $T + S_B$

For bovine tuberculosis, according to the available observations...

... 4/22 methods can be used

seqTrack outbreaker2 TransPhylo phybreak

Duault et al. (2022) Pathogens

Indicator	Definition	Method
Accuracy		cogTrack
Super-spreaders		outbreaker2
Index case host species		Iransphylo
Outbreak size	In reconstructed trees : $\frac{no \ of \ sampled \ hosts}{median \ sampling \ proportion}$	outbreaker2
Host species contribution		Transphylo

Indicator	Definition	Method	
Accuracy		coaTrack	
Super-spreaders		outbreaker2	
Index case host species		Transphylo	
Outbreak size		outbreaker2	
Host species contribution	In reconstructed trees : $\left(\frac{no \ of \ transmission \ events \ between \ sampled \ hosts}{median \ of \ sampling \ proportion}\right)_{species}$	Transphylo	

Overall, the performance of the three methods is mediocre with the reference scenario

Sampling biases have little effect on accuracy or the index case...

Methods 🔲 outbreaker2 🔲 seqTrack 🔲 TransPhylo

... and host species contribution

Methods 🔲 outbreaker2 🔲 TransPhylo

outbreaker2's good performance for outbreak size deteriorates rapidly with species bias

Methods 🔲 outbreaker2 🔲 TransPhylo

In other epidemiological contexts, the results are no better

What question do we expect to answer ?

Indicator	
Accuracy	
Super-spreaders	Who-infected-who?
Index case host species	
Outbreak size	Can we have a correct picture of the outbreak ?
Host species contribution	•

How can we improve the results ?

- Test simultaneous phylogenetic method
 - > phybreak ?

MolEvolEpid/ **biophybreak**

兵

- Improve convergence for transPhylo
- Increase the level of information in the data
 - Contact data ?

Thank you

EpiMIM

Hélène

Benoit

DURAND

DUAULT

Gabriela **MODENESI**

Aurélie COURCOUL

LNR Tuberculose animale

Maria-Laura **BOSCHIROLI**

Lorraine MICHELET

We need methods adapted to multi-host systems with sampling bias

Non-phylogenetic methods for studying bTB

Phylogenetic methods for studying bTB

Sequential : TransPhylo

Simultaneous : phybreak

