> From mechanistic models to decision-support tools

Generating user-friendly web application from artificial intelligence and software engineering methods

Sébastien Picault, G. Niang, V. Sicard, B. Sorin, S. Assié, P. Ezanno INRAE, BIOEPAR, Dynamo – August 28, 2024

> Challenges in mechanistic models & tools

Developing & revising mechanistic models:

- is essential to understand, anticipate and control pathogen spread in contrasted situations
- takes time (conceptualization + software implementation)
- computer code deprives non-computer scientists of their ability to check and revise assumptions ("black box")

Using models:

- requires a broad expertise (code handling + large number of parameters + large number of outputs)
- often leads to "generic" results (stochasticity + scenarios but also "average" calibration)

Developing decision-support tools based on mechanistic models:

- requires further software developments (to target relevant use cases and provide meaningful outcomes)
- requires evolvability (tool features + model updates)

> EMULSION: AI methods to foster the co-construction of models

- declarative language for epi models
- explicit models
 - → structured text: readable, revisable
 - → co-construction with non-modellers
- no (little) programming code
 provides built-in calculation processes
- gains time, reliability, evolvability
- AI → multi-level agent-based systems knowledge representation

Software Engineering → dedicated language

EMULSION: Transparent and flexible multiscale stochastic models in human, animal and plant epidemiology

Sébastien Picault⊚^{1,2}*, Yu-Lin Huang¹*, Vianney Sicard⊚¹, Sandie Arnoux⊚¹, Gaël Beaunée⊚¹, Pauline Ezanno⊚¹

> PASTE: from models to web tools

using EMULSION for co-constructing models -> based on a dedicated language

- human-readable
- machine-readable

core of a decision-support tool = specific way of using a model

→ build a dedicated language!

PASTE: from models to web tools

> PASTE: Deployment & utilisation

INRAe

From mechanistic models to decision-support tools 2024-08-28 / INRAE, BIOEPAR / Modelling in Animal Health conference (ModAH 2024)

> PASTE: workflow for automated web code generation

> Application: controlling BRD in young beef cattle

Bovine Respiratory Disease (BRD)

> Modelling BRD onset, detection and treatment

Gather several relevant processes

- infection: pathogens, transmission, infection duration...
- disease: onset of mild / severe clinical signs, mortality...
- detection: visual appraisal, hyperthermia, sensors...
- treatment: individual vs. collective

Picault et al. Veterinary Research (2022) 53:77 https://doi.org/10.1186/s13567-022-01094-1

RESEARCH ARTICLE

Open Access

Modelling the effects of antimicrobial metaphylaxis and pen size on bovine respiratory disease in high and low risk fattening cattle

Sébastien Picault^{1*}

Pauline Ezanno¹, Kristen Smith², David Amrine², Brad White² and Sébastien Assié¹

Modeling the effects of farming practices on bovine respiratory disease in a multi-batch cattle fattening farm

Baptiste Sorin-Dupont ^{a,*}, Sebastien Picault ^a, Bart Pardon ^b, Pauline Ezanno ^{a,1}, Sebastien Assié ^{a,1}

How to make these models usable?

- in real farms
- by veterinarians / farmers
- autonomously

> Overview of the generated BRD tool

```
input_parameters:
    - block_values:
        pathogen:
        - file_path: "input_files/pathogens.csv"
        batch_isolation:
        - file_path: "input_files/biosecurity.csv"
        risk_level:
        - file_path: "input_files/risk_level.csv"
```

risk_level.csv

BRD model parameters

name,prop_lowrisk,prop_mediumrisk,prop_highrisk

```
balanced (0.3/0.4/0.3), 0.3, 0.4, 0.3
mainly low (0.6/0.3/0.1), 0.6, 0.3, 0.1
mainly high (0.1/0.3/0.6), 0.1, 0.3, 0.6
contrasted (0.5/0/0.5), 0.5, 0.0, 0.5
```

INRAe

From mechanistic models to decision-support tools

2024-08-28 / INRAE, BIOEPAR / Modelling in Animal Health conference (ModAH 2024)

Initial conditions

Risk level of calves

balanced (0.3/0.4/0.3)

mainly low (0.6/0.3/0.1)

mainly high (0.1/0.3/0.6)

contrasted (0.5/0/0.5)

Main pathogen

Identify relevant parameter groups & values

Identify tool-specific parameters

> Overview of the generated BRD tool

```
statistics:
  for_each_scenario:
     - mean C:
         - desc: "Animals with severe clinical
    signs (mean, q05, q95)"
         - target_variable: [ "metapop_total_C" ]
         - groupby: [ "step" ]
         - summarise:
             - mean
             - perc_0.5:
                 value: "quantile(..., 0.05)"
                 desc: "5th percentile"
             - perc_0.95:
                 value: "quantile(..., 0.95)"
                 desc: "95th percentile"
    comparison_of_scenarios:
```

generated R code

```
mean_C <- data %>% group_by(step) %>%
summarise(
   mean_metapop_total_C=mean(metapop_total_C),

   perc_0.5_metapop_total_C=quantile(metapop_total_C,
       0.05),

   perc_0.95_metapop_total_C=quantile(metapop_total_C,
       0.95))
```

Specify generic treatment workflows

Compare scenario outcomes

Overview of the generated BRD tool

```
graphics:
plot_mean_C_disease_mixed:
   - data: "mean C"
   - on_page: ["Batches"]
   - label: ["Mean Clinical per batch"]
   - single_graph: "yes"
   - scenario: ["disease_sorted_batches"]
   - plot_variables:
       x: "step"
       v: "mean_total_C"
   - plot_type:
       - line:
           plot_variables:
             colour: "scenario_name"
           plot_options:
             size: "2"
       - ribbon:
           plot_variables:
             ymax: "perc_0.95_metapop_total_C"
             ymin: "perc_0.5_metapop_total_C"
             fill: "batch"
           plot_options:
             alpha: "0.2"
   - plot_annotations:
       title: "Animals with severe clinical signs (mixed batches)"
```

generated R shiny app + ggplot

Identify and organize meaningful outputs

INRAe

y_title: "Average"

x_title: "Time (1/2 days)"

> Perspectives

Finalisation of a tool for BRD:

• realistic parameterization of the economic gains / losses + relevant interventions (Théo Salles & Baptiste Sorin)

Application to other diseases/species:

• developing a model for *Mycoplasma hyopneumoniae* (IRTA) $\leftarrow \rightarrow$ sketching a tool for pig diseases management

Extending the language & tool features:

- Metrics for scenario comparisons, intervention prioritization & recommendations
- Integration of real-time data to inform the model & update scenarios

> Connecting models with data

Research perspectives on animal health in the era of artificial intelligence

Pauline Ezanno [™], Sébastien Picault, Gaël Beaunée, Xavier Bailly, Facundo Muñoz, Raphaël Duboz, Hervé Monod & Jean-François Guégan

Veterinary Research 52, Article number: 40 (2021) | Cite this article

Data-based models

- Predictive models built from data
- "Health alerts" often lack specificity
- Short time scales (hours/days)

Mechanistic models

- Challenge in model calibration
- Comparison of scenarios, even counterfactual
- Broader time scales (weeks/months)

> Take-home messages

- Artificial intelligence and software engineering methods leveraged together help automate model & tool design
- Knowledge representation methods provide explicit & readable representations of model & tool components to foster co-construction
- Generic, modular & extensible approaches → adaptable to various pathosystems, diseases, species...

> Thank you for your attention!

Open-source software!

https://sourcesup.renater.fr/www/emulsion-public

https://forgemia.inra.fr/dynamo/software/paste-public-release

> One step further: incorporating real-time data

