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Simulation of the process
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• Thousands of insects (black dots) released from a single point

• They disperse independently from each other following a Brownian motion:

▪ Changing direction continuously, with no preferential direction

▪ Same model of fluid diffusion at thermal equilibrium

• A few traps (orange squares) scattered over the area catch a fraction of the nearby individuals.

• As time progresses, individuals either eventually get caught or die (naturally, or from other causes such as predators)
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Target quantities

The spread rate of individuals The fraction of individuals still alive at
a given time

Diffusivity Survival rate
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• Diffusivity: the rate of diffusion. I.e. The rate at which the particules spread.

• Survival rate: the fraction of individuals still alive at a given time
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Observations
Counts of individuals caught during trap activation periods

Example structure

trap ini_day end_day catch

1 0 7 31

2 1 8 15

1 10 15 12

... ... ... ...
(Fake data)
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• Each trap is set up and remains active during a few days

• At the end of the period, operators collect and count their catch
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Goal

Diffusivity

Probabilistic model

Survival rate

Observations
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• Develop a probabilistic model for the observations, given the target quantities (forward)

• Use observations to conduct statistical inference on the parameters (backward)
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We can only observe dispersal and survival

indirectly
through captures
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Intuitively:

• Captures concentrated in the inner traps for a long time indicate small diffusivity and the converse

• Captures dropping quickly over time indicate low survival rate and the converse
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Dispersal
Brownian motion 🠖 Diffusion equation:

: population density at position  and time .

 : diffusivity coefficient

ρ(x, t) x t

= D ρ
∂ρ

∂t
∇2

D
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• Hypothesis: Brownian motion implies that the dispersion follows the diffussion equation, where

• ∇2: laplacian operator (divergence of gradient)

• Where we find on of the parameters of interest: the diffusivity coefficient
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Dispersal: Closed-form solution

∣ t, D ∼ N (0, 2tD )Xt I2
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• This simple dispersal model has a very simple analytical expression in terms of a bivariate Gaussian distribution centred at the release

point and with dispersion proportional to D and t
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Effect of traps on density

Kernel density estimate of the empirical and theoretical distributions at day 15 with
or without traps
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• The capture of insects in traps cause a slight reduction in the density near the origin, with respect to the theoretical density (which ignores

catch)

• In practice this is typically irrelevant. Only a problem if there is a significant share of insects caught after many days of capture to make it

noticeable (15, in the example)

• However, this is a source of bias in the estimate of the diffusivity coefficient (wich is proportional to the variance of this density)
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Survival
Let  be the time of death of individuals.

Assuming a constant hazard rate1 ,

T0

λ0

(t)S0 = P( ≤ t)T0

= exp{− t}λ0

�. A common, albeit unrealistic simplifying hypothesis.
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• Hazard rate: instantaneous probability of death, given survival to that time.

• A simple (and common, although maybe not realistic) assumption is that the hazard rate is constant: if an individual survived until t, the

probability of death in the next instant is independent of t

• Insects die, eventually, we don’t know at which rate

• Furthremore, we can’t observe their death directly

• When an individual gets caught, we know that they have survived until then
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Capture
Assumption: the hazard rate of capture decreases
exponentially with the squared distance to the trap

(t ∣ ) = αhi Xt e−β|| − |Xt xi |2

α, β > 0
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• We need to model the capture process, even though its parameters are not our target quantities

• For trap i at xi, conditional to position Xt.
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Notation
Random variables associated to a released individual

Time at which an individual ceases its
activity

Either death ( ) or capture in
trap  ( )

End Time

T > 0

End Cause

C ∈ {0, 1, … , I}

C = 0
i C = i
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• Use concepts and tools from time-to-event (survival) models with competing risks
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Specific hazard rates

(t) = [α ], α, β > 0hi EXt
e−β|| − |Xt xi |2

 Result

(t) =hi

α

1 + 4βtD
e

−β|| |xi |2

1+4βtD
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• We don’t know the position of every individual at time t, so we consider the expectation over its (known) probability density

• The calculation yields a closed-form expression for the specific hazard rates
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Hazard functions of the capture times for traps at
increasing distances from the release location

(Dispersion and capture parameters as in the simulation)
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Capture times
Theoretical vs empirical distributions of capture times

(Traps with 10+ total catch)
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Mixed joint distribution
At any given time,

�. Additive hazard rates

�. Relative risks of death or capture are proportional to the
specific hazard rates

where 

 Result

P(C = i, T = t) = P(C = i ∣ T = t) (t)fT

= (t)S(t)hi

S(t) = exp ( − (u) du)∫ t

0 ∑I
i=0 hi

16



Borrowing ideas from survival models with competing risks,

• At any given time, the hazard rates are additive

• Enabling the (numerical) computation of the overall survival (i.e. fraction of individuals that are still active at time t)

•  We can integrate the distribution over the observation intervals for each trap to evaluate the likelihood!! 

•  Sadly, we lose the analytical expressions and need to evaluate the integrals numerically

• The exponential component multiplying the specific hazard rate is the overall survival function S(t)
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Distribution of end causes

Predicted vs. observed proportion of end events by cause (death / trap)

17



• We evaluated the expected and 95% quantile interval for the proportion of dead and caught individuals in each of the traps over all the

simulation period and compared with the realised frequency (only traps with 1+ captures shown)
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Full likelihood
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• We borrowed ideas from survival models with competing risks to combine the specific hazard rates and compute the joint distribution of

end times and causes

• We integrate numerically over the observation periods to obtain the likelihood function

• The figure shows the likelihood function of the simulated scenario.

• The blue points indicate the maximum likelihood (which is almost flat over the diagonal)

• The true value is in the center of the central panel.
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SIT: sterile insect technique
Sequence of releases of sterile insects for pest control

• Released males mate with wild females producing sterile

eggs

 Avoid pesticides (which contaminate the environment)

Introductory video presentation
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• Control disease transmission and reduce agricultural damage without insecticides

• Sterile males mate with wild females reducing offspring

• Need to quantify parameters such as number of individuals to release, temporal frequency, spatial extent, etc. to produce the desired

effect of reduction or suppression of the wild population.

• These parameters depend, among other things on the diffusivity and the survival behaviour of the released sterile males in the context

of the specific area.
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Issues

• Bias in dispersion (and diffusivity)

• Efficiency in numerical calculations (time consuming)

• Identifiability of capture parameters  and 
(reparameterise!)

α β
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Extensions

• Non-isotropy

• Varying attractiveness of traps

• Integrate further sit parameters into the model

• Optimal designs
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• Further parameters such as egg hatching rates, competitiveness…
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Conclusions
 A formal probabilistic model for the dispersion, survival

and capture of insects in sit experiments

 Enable inference with appropriate quantification of
uncertainty in the target parameters

[WIP]
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Thank you

• Press ‘s’ to access speaker notes

• Slides available at 

• An extended (23) version of the slides are at 

https://astre.gitlab.cirad.fr/presentations/202408-modah-modelling-sit/

https://astre.gitlab.cirad.fr/presentations/202408-modah-
modelling-sit/extended.html
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