Using machine learning with wild bird
reporting data to produce risk
maps of Highly Pathogenic Avian Influenza
In Britain and determine possible
biases in the wild bird reporting
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More than 50,000 wild birds in UK killed Alarm as HPAI Kills almost 9,000 sea

by avian flu - double previous estimates . . tures in Chile

H5N1 bird flu may lead to extinction of species as datarevealed by
Guardian shows worst losses in decades

Mark Clements
May 30, 2023
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_ 2022 has seen a deadly and highly pathogenic new strain'of HSNT bird flu' make a catachysmic imbact on
captive and wild bird populations. Conservationists and scientists are counting the cost.

Mark Clements: Over 8,887 sea creatures have been recorded de
so far this year due to infection with the highly pathogenic avian
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Bird flu: H5N1 virus in Brazil wild birds
prompts animal health emergency

Health declaration to last 180 days, as world's biggest exporter of
chicken meat detects virus for first time ever

Transatlantic spread of highly pathogenic avian
influenza H5N1 by wild birds from Europe to North
Americain 2021
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Infectious disease

The highly pathogenic H5N1 virus found in U.S. dairy
cattle has some characteristics that could enhance
infection and transmission among mammals

o INDEPTH

Cows in the US have
bird flu - is it inching
closer to humans?

Fabien Filaire & Sander Herfst &

Deadly H5N1 avian influenza s
mainland Antarctica for the firs

By environment reporter Peter de Kruijff
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A highly pathogenic H5N1 influenza virus is spreading in U.S. dairy cattle and has been

Mon 26 Feb

transmitted to other species, including humans, probably through contaminated milk.

22 May 2024
Understanding how the virus spreads among cattle and its potential for mammalian

adaptation and airborne transmission is crucial for effective outbreak control and public

health safety.
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@ David Aaronovitch

& Presenter, The Briefing Room
, i @DAaronovitch

Novel e

emergence in

cattle

The long-feared leap

The H5N1 strain of avian flu has been around since 1996, but until now it has
been largely confined to animals. But it has now jumped to cattle in America

and some think it means we are inching towards 1 to-h
infection, with p ially serious ¢ q es
The detection of avian influenza in a pair of deceased brown skua presents a risk to Antarctica's unique wildlife which could be
devastated by the disease, (Liam Quinn, Gentoo Penguin defends against a Brown Skua, CC BY:SA 20 DEED) C O n ti n u e d Infected COWS have Stal"ted infecting
spread to new each other
https://www.abc.net.au/news/science/2024-02-27/deadly-h5n1- populations https://www.bbc.co.uk/news/articles/clee5685w190

avian-influenza-strain-detected-on-antarctica/103473276 https://www.nature.com/articles/s41684-024-01425-z
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HPAI in Great Britain (H5N1)

FOSRVE WG BIrDS
Reporting Period 2

Pozve Vid Birds
Reporong Pernd 3

Positive Wiid Birds
Reporting Period 4

- APHA County
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Source 1: October 2021 to September 2022: Highly
Pathogenic Avian Influenza H5N1 outbreaks in
Great Britain. The Animal and Plant Health Agency.
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bird-flu

Source 2: October 2022 to September 2023: Highly
Pathogenic Avian Influenza H5N1 outbreaks in
Great Britain. The Animal and Plant Health Agency.
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National impact on seabird populations
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UK Government commissioned report
advised on four specific issues:

1. the host range of the current virus and
the potential roles of non-avian hosts

2. the possibility of interventions to
reduce the impact of HPAI on wild birds

3. the potential to supplement current
approaches to control with vaccination

4. the potential to model the expected
future trajectory of the outbreak

30 March 2023 — Independent report
Highly pathogenic avian influenza

in Great Britain: evaluation and
future actions

An independent scientific evaluation
of evidence around highly
pathogenic avian influenza (HPAI) in
Great Britain.




UK Government commissioned report
advised on four specific issues:

1. the host range of the current virus and
the potential roles of non-avian hosts

2. the possi

reduce th
3. the pote
approach
An independent scientific evaluation
4. the potential to model the expected of evidence around highly
future trajectory of the outbreak pathogenic avian influenza (HPAI) in

Great Britain.




Wild bird infection reporting

Passive surveillance syster

Previously via phone, now
online

Species recorded as Goos
Gull, Swan, Duck, Bird of
Prey and Other. In this
study, grouped into

 Landbirds
 Waterbirds
e Seabirds
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& GOV.UK

Home > Environment > Wildlife, animals, biodiversity and ecosystems > Wildlife and habitat conservation > Birds

Guidance

Report dead wild birds

How to report dead wild birds.

Use this service to report dead wild birds. Your report will help us understand
how diseases are spreading.

We'll ask you:

+ where you found the dead birds
+ what type of dead birds you found
* how many dead birds you found

* your contact details (find out how your personalinformation is used)

If you're under 18, ask a parent or guardian to fill in this form.

It should take about 5 minutes.

Start now >

https://www.gov.uk/guidance/report-dead-wild-birds



Wild bird infection reporting

Passive surveillance strongly influenced by human ascertainment

Where do people live?
Where do people go for recreation?

Who is doing the reporting and where do they most likely live?



Defining wild bird and poultry contact
networks (Roslin/Aeron Sanchez)

* Implementation of ML model to ‘correct’ for

ascertainment bias
ML model to describe observed distribution

Distn of
infection in

rep‘ofrtgd‘h dead

Variable importance

Corrections
for
ascertain-
ment

Explanatory variables

, a P " & THE UNIVERSITY of EDINBURGH
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‘corrected’ wild bird
infection risk map
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Estimates of wild bird densities

|

i\ W‘\ S
e S -
eBird combine eBird run
General public Data submitted to observations with sophisticated
observe and eBird measures of habitat, predicted relative
count birds weather, effort, etc. abundance
modelling

Used by S. Vickers (RVC but now Edinburgh) to estimate wild bird population densities in GB



Machine Learning tools to identify

epidemiological risks

* Binary Decision Trees

Has feathers?

ﬁruekal se

Can fly? Has fins?
/True lFalse lTrl\Fal se
Hawk Penguin Dolphin Bear

https://amueller.github.io/aml/02-supervised-
learning/08-decision-trees.html

(similar methods for continuous variables)

What set of questions allow me to most
efficiently identify the right suspect?




Correlation between variables

* Simple Decision Trees are highly susceptible to OVERFITTING

* Very precise description of training dataset
Very poor prediction on any new data

Increasingly problematic with small datasets
Highly correlated variables
Noisy data



Randomly selected features (until pre-set minimum points per

leaf)
Randomly Features Features Features Features
. e [ ]
chosen training D D D D
z 9 z 2
data subsets 3 3 3 F
(66%) 8 5 g g

Tree #1 Tree #2 Tree #3 Tree #4

I
“VOTE”

Take aggregate of answers, rather
than the answer of the aggregate

Controls for
overfitting and

variable
correlations

15



Assessing univariate roles

e Assess contribution of individual variables to model fit

* “permutation importance” — assess reduction in model fit after
randomizing each variable in turn

* Partial dependence/Accumulated local effects — assess univariate
Impact on outcomes

 Shapley values/Shapley importance ensures ‘fair’ distribution of
contribution to all contributors (efficient, symmetric, additive and
with only contributors benefiting)



Risk factors included in the model

Date Data sources:
Location
Species Group Density estimates based on

Wild bird populations for species grouping and date e-Bird (Vickers, RVC)

Human populations UK Census data
Distance to rivers and lakes

Distance to roads and walking paths

Distance to towns

Driving distance and times to towns

Land usage

Reported on a bank holiday
Distance to eBird hotspot and eBird hotspots within a set radius



Training and testing ML models

Consider multiple approaches: random forest models, GLMs, SVMs and gradient boosted trees

Models trained to predict binary outcome: will a tested wild bird that result as positive/negative for
H5N1 (w/o specifying lab test sensitivity/specificity).

For testing and analysing our models we used 5-Fold cross validation (run 4 times).

Area under the ROC curve or AUC as a measure of the model performance.

Random forest models and gradient boosted decision trees were the best performing (GBT .
For the rest of the investigation, we will use boosted decision tree models

* Decision threshold at 0.5 this gave an accuracy of 0.879 [0.858,0.894], sensitivity of
0.678[0.584,0.726] and specificity of 0.938 [0.905,0.957].
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Assessing model fit

1.0 - —
— E—
—— Random forest (AUC = 0.91)
0.0 - Gradient boosted tree (AUC = 0.92)
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (Positive label: 1)

False Negative Rate (Positive label: 1)
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Model tested for overfitting using 5 fold cross-validation

Prediction depends on the
chosen decision threshold used
on the probability of the output
prediction.

(L) Receiver Operating
Characteristic (ROC) plot of true
positive rate (sensitivity) vs. false
positive rate (1-specificity)

(R) Detection error tradeoff (DET)
curve Shows false negative rate
(1-sensitivity) against false
positive rate(1-specificity).
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Highly correlated variables can “mask”
the importance of individual variables.

0.50

0.25

Permutation Importances (test set)

Day of year A
ReportBirdCount -
closest_eBird_hotspot_km 1
Group0_Seabird 1
eBird_hotspots_within_Skm 4
northing -

distance to lake -

distance to road 1

-0.25

-0.50

distance to coast 4
land_coverage_Urban 1
Group0_Landbird +

pop within 10km

poultry farms within LOkm +
Group0_Waterbird -

pop within 2km -

Group0 bird pop within 2km 1

pop within Skm -

poultry birds within 2km 1

poultry farms within 2km -
working_pop 1
land_coverage_Suburban -
land_coverage_Supralittoral sediment 4
land_coverage_Saltwater -
land_coverage_Arable -
land_coverage_Acid grassland
land_coverage_Calcareous grassland -
land_coverage_Bog -
land_coverage_Coniferous woodland -

-0.75

L wwdment 4
Bnd_coverage_Ueban 4
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Day of year _ poultry birds within 2km l

S h d p ley Fe at ure reportsirdcount [ bay of week [}
Group0_Seabird _ land_coverage_Urban I

GroupO bird pop within 2km _ land_coverage_Suburban I

I I I l p O rta n C e Group0 bird pop within 10km -
Group0 bird pop within Skm || N

Permutation feature importance shows many pouttry farms within 10km [
distance to coast -

” . ” .
unim po rta nt varia b | €S closest_eBird_hotspot_km -
Group0_Waterbird -
eBird_hotspots_within_5km -
Group0 Bird Population -
poultry farms within 5km -

land_coverage_Freshwater I

Year I

land_coverage Improved grassland |

land_coverage_Deciduous woodland |
in national park |

land_coverage_Neutral grassland |

land_coverage Arable |
land_coverage_Littoral rock |
greenspace |

BUT model has high accuracy (R2 ~ 0.xx).

land_coverage_Supralittoral sediment |

likely due to the correlations between a number distance to road [

of the input features poultry birds within skm [l
distance to river .

residential_pop .
poultry birds within 10km .

land_coverage_Supralittoral rock |
land_coverage_Littoral sediment |
is_holiday |

land_coverage_Coniferous woodland

Shapely contributions or SHAP plots we see a easting [l land_coverage. Acid grassland
higher number of features contributing to the pop within 2km [l land_coverage_Saltmarsh
model predlctlo ns distance to lake . land_coverage_Inland rock
. distance to path (m) . land_coverage_Saltwater

northing . land_coverage_Calcareous grassland

poultry farms within 2km .
pop within 5km [Jj
pop within 10km .

land_coverage_Heather
land_coverage_Fen
land_coverage_Bog

working_pop l land_coverage Heather grassland

Group0_Landbird l
mean(|SHAP value|) (average impact on model output magnitude)



Shapley Feature
Importance

Permutation feature importance shows many
"unimportant” variables

BUT model has high accuracy (R2 ~ 0.xx).

likely due to the correlations between a number
of the input features

Shapely contributions or SHAP plots we see a
higher number of features contributing to the

model predictions.

Group0 bird pop within 2km || EGTEGN
Group0 bird pop within 10km -
Group0 bird pop within Skm || N
poultry farms within 10km -
distance to coast -
closest_eBird_hotspot_km -
Group0_Waterbird -
eBird_hotspots_within_5km -
Group0 Bird Population -
poultry farms within 5km -
distance to road .
poultry birds within 5km .
distance to river .
residential_pop .
poultry birds within 10km .
easting .
pop within 2km .

distance to lake .

distance to path (m) .
northing .

poultry farms within 2km .
pop within 5km [Jj

pop within 10km .
working_pop l
Group0_Landbird l

poultry birds within 2km l
Day of week l

land_coverage_Urban I

land_coverage_Suburban I
land_coverage_Freshwater I

Year I

land_coverage Improved grassland |

land_coverage_Deciduous woodland |

Poorly
represented
in e-bird

in national park |
land_coverage_Neutral grassland |
land_coverage Arable |
land_coverage_Littoral rock |
greenspace |
land_coverage_Supralittoral sediment |
land_coverage_Supralittoral rock |
land_coverage_Littoral sediment |
is_holiday |
land_coverage_Coniferous woodland
land_coverage_Acid grassland
land_coverage_Saltmarsh
land_coverage_Inland rock
land_coverage_Saltwater
land_coverage_Calcareous grassland
land_coverage_Heather
land_coverage_Fen
land_coverage_Bog

land_coverage Heather grassland

mean(|SHAP value|) (average impact on model output magnitude)



Generating risk maps

models trained on the entire data set
without a test set

50,000 mock data points generated with a
random location date and species.

Each mock data point passed through the
final model; probability of testing positive
calculated for each point.

leb
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Scatter plot of all the mock points where the
colour scale represents the model prediction
probability of an that bird testing positive.




Ascertainment
corrected risk map

i 06

Probability reported dead bird is HPAI positive

Where is under-
reporting

particularly
evident?

Areas inred
represented areas
with at least one
reported dead
bird where
ascertainmentis
particularly low



Comparison of real test locations to predicted

14 1 B Average prediction probability
B Real fraction testing positive
Re m oval of .
ascertainment
biased variables 10 -
Median
suggests there may Sredicted
be a much broader 87 fraction positive
circulation of virus substantially
6 - lower than
than observed but observed (excl.
most have lower test . zeroes) Many locations
. ith only 1
fraction than W S;;gle
observed 2 -
0- —= l

0.0 0.2 0.4 0.6 0.8 1.0



Ongoing work by collaborators
uses/tests this model

Pilot: 7 main sites plus 5 one-off sample sites from the
Highlands and also collections from Bass Rock and
Fedra

* (mayincrease -Loch Fleet, Wigton Bay)
* Pond/lake sediments (5 sites/4 samples per site)
* Faecal/environmental samples (mainly
geese/gannets)

Repeat sampling 3 times (summer, start of winter

arrivals later winter) — currently on 2" round

rt-PCR for M-gene — RNA extractions underway
| r rement | t Edinburgh) (n>2

MinlON seq of any +’ves

* Doesthis approach work?
e Can we detect AlV in different seasons?

From work of Lina Gonzalez Gordon & Mark Bronsvoort, Roslin Institute
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Ongoing work by collaborators
uses/tests this model

Pending confirmation
Received samples

Waiting for samples

3 I _ &
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P
= AllD / SPotian —
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C\ l.s
’.
EdiBah 300+ samples being
_l b processed
"Unitged Kingdom
- Newcastle
Belfast S ‘ ) Upon Tyne
Great Britain

Isle’of Man
Leeds



Conclusions

o

ML models describe surveillance data to high
accuracy

Removal of human observation factors creates a
“prediction landscape” based solely on natural factors

Ascertainment corrected map shows evidence of
much wider spread dissemination but no evidence of
areas of high infection (BUT may be beyond limits of
ML models if strong unobserved nonlinearities

e-bird data coarse grained (seagulls in particular)
Does not account for pattern vs. process issues

Currently being used to guide field work/active
surveillance
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